Differential Geometry

Homework 6

Mandatory Exercise 1. (10 points)
Let Z^{k} be the set of all closed k-forms on a smooth manifold M and define a relation \sim between forms in Z^{k} as follows: $\alpha \sim \beta$ if and only if they differ by an exact form, that is, if $\beta-\alpha=d \theta$ for some ($k-1$)-form θ.
(a) This relation is an equivalence relation.
(b) Let $H^{k}(M)$ be the corresponding set of equivalence classes (called the k-dimensional de Rham cohomology vector space of M). Show that addition and scalar multiplication of forms define indeed a vector space structure on $H^{k}(M)$.
(c) Let $f: M \rightarrow N$ be a smooth map. Show that:

- The pull-back f^{*} carries closed forms to closed forms and exact forms to exact forms.
- If $\alpha \sim \beta$ on N then $f^{*} \alpha \sim f^{*} \beta$ on M.
- f^{*} induces a linear map on cohomology also called $f^{*}: H^{k}(N) \rightarrow H^{k}(M)$ naturally defined by $f^{*}[\omega]:=\left[f^{*} \omega\right]$.
- If $g: L \rightarrow M$ is another smooth map, then $(f \circ g)^{*}=g^{*} \circ f^{*}$.
(d) Show that the dimension of $H^{0}(M)$ is equal to the number of connected components of M.
(d) Show that $H^{k}(M)=\{0\}$ for every $k>\operatorname{dim}(M)$.

Mandatory Exercise 2. (10 points)
Let (M, g) be a Riemannian manifold and $f \in C^{\infty}(M)$. Show that for every regular value $a \in \mathbb{R}$ of f the gradient $\operatorname{grad}(f)$ is orthogonal to the submanifold $f^{-1}(a)$.

Suggested Exercise 1. (0 points)
We say that a differentiable curve $\gamma:[a, b] \rightarrow M$ is obtained from the curve $c:[c, d] \rightarrow M$ by reparametrization if there exists a smooth bijection $f:[a, b] \rightarrow[c, d]$ (the reparametrization) such that $\gamma=c \circ f$. Show that the length of a curve does not change under reparametrization.

Suggested Exercise 2. (0 points)
Denote by $S O(n)$ the special orthogonal group consisting of orthogonal $n \times n$ matrices with determinant 1.
(a) Show that the two Lie groups $S^{1} \subset \mathbb{C}$ and $S O(2)$ are isomorphic. (Here isomorphic means isomorpic as Lie groups, i.e. there exists a group isomorphism which is also a diffeomorphism.)
(b) Consider the two Lie groups $O(n)$ and $S O(n) \times \mathbb{Z}_{2}$. Are they homeomorphic? Are they isomorphic as Lie groups?

Suggested Exercise 3. (0 points)
Let S be a tensor of type $(0,1)$, i.e. a section of $T^{*} M$, and X, Y be vector fields on M. Show that

$$
\left(\mathcal{L}_{X} S\right)(Y)=X(S(Y))-S([X, Y])
$$

Hint: Start from $X(S(Y))$ and view it as a Lie derivative of a function $S(Y)$ in direction of X.

Suggested Exercise 4. (0 points)
Let $g=\sum_{i, j=1}^{n} g_{i j} d x^{i} \otimes d x^{j} \in T_{p}^{(0,2)} M$ be a (0,2)-tensor. Show that:
(a) g is symmetric if and only if $g_{i j}=g_{j i}$.
(b) g is non-degenerate if and only if $\operatorname{det}\left(g_{i j}\right) \neq 0$.
(c) g is positive definite if and only if $\left(g_{i j}\right)$ is positive definite.
(d) If g is non-degenerate, the map $\Phi_{g}: T_{p} M \rightarrow T_{p}^{*} M$ given by $\Phi_{g}(v)(w)=g(v, w)$ is a linear isomorphism.
(e) If g is positive definite then g is non-degenerate.

